深度学习是一门综合的研究方向,目前大多数研究生都在研究这个,包括我在内,我研究的是图像识别领域,包括图像分类、目标识别、对象定位、风格迁移等等。
说回来,那到底要如何去学习深度学习,首先深度学习属于机器学习的一个分支,机器学习分为监督学习、无监督学习、强化学习、半监督学习和深度学习
要想学习深度学习就必须先学习机器学习,学习机器学习,首先需要储备的知识就是高等数学、线性代数以及统计数学的基础知识,其中统计数学最重要,推荐可以看李沐老师的《统计学习方法》,学习概率分布、大数定律等等。
机器学习,需要学习监督学习,包括线性回归、逻辑回归、梯度下降方法减小代价函数。无监督学习,包括聚类等等,支持向量机、神经网络,这里推荐吴恩达老师的机器学习,通俗易懂,有利于小白学习。
学完上面的内容就可以开始学习深度学习了,学习深度学习,深度学习主要是利用神经网络去解决问题,图像识别用的是卷积神经网络,自然语言处理利用的是循环神经网络。这里推荐看吴恩达老师的深度学习,一定要做课后编程题,使用python需要做。
学习完理论知识,就需要学习一个深度学习的框架:Tensorflow、Pytorch。最近几年pytorch用的人越来越多了。图像识别的话,还需要学习opencv。
本文如未解决您的问题请添加抖音号:51dongshi(抖音搜索懂视),直接咨询即可。