热心网友
回答时间:2025-01-23 18:58
f(x)=√x,g(x)=a㏑x
曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线
设它们在(x0,y0)处相交且有相同的切线
f(x)'=1/(2√x),g(x)'=a/x
f(x0)'=1/(2√x0)=a/x0=g(x0)'则x0=4a²,y0=√x0=2a
将(x0,y0)代入g(x)=a㏑x,则2a=a㏑(4a²)=2a㏑(2a),
㏑(2a)=1=㏑e,a=e/2
收起
热心网友
回答时间:2025-01-23 18:58
设交点为(x0,y0),
求导可得1/(2√x0)=a/x,
∴x0=4a^2,
代入方程√x0=alnx0,
当a≥0得x0=a=0
∵是增根,
不符合题意,舍去
当a≤0,
得ln(-2a)=-1,
∴a=-1/2e
收起